What is Neodymium Magnets

A neodymium magnet (also known as NdFeB, NIB or Neo magnet) is the most widely used type of rare-earth magnet. It is a permanent magnet made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. Developed independently in 1984 by General Motors and Sumitomo Special Metals, neodymium magnets are the strongest type of permanent magnet available commercially. Because of different manufacturing processes, they are divided into two subcategories, namely sintered NdFeB magnets and bonded NdFeB magnets. They have replaced other types of magnets in many applications in modern products that require strong permanent magnets, such as electric motors in cordless tools, hard disk drives and magnetic fasteners.

History

General Motors (GM) and Sumitomo Special Metals independently discovered the Nd2Fe14B compound almost simultaneously in 1984. The research was initially driven by the high raw materials cost of SmCo permanent magnets, which had been developed earlier. GM focused on the development of melt-spun nanocrystalline Nd2Fe14B magnets, while Sumitomo developed full-density sintered Nd2Fe14B magnets. GM commercialized its inventions of isotropic Neo powder, bonded neo magnets, and the related production processes by founding Magnequench in 1986 (Magnequench has since become part of Neo Materials Technology, Inc., which later merged into Molycorp). The company supplied melt-spun Nd2Fe14B powder to bonded magnet manufacturers. The Sumitomo facility became part of the Hitachi Corporation, and has manufactured but also licensed other companies to produce sintered Nd2Fe14B magnets. Hitachi has held more than 600 patents covering neodymium magnets.

Chinese manufacturers have become a dominant force in neodymium magnet production, based on their control of much of the world’s sources of rare earth mines.

The United States Department of Energy has identified a need to find substitutes for rare earth metals in permanent magnet technology and has funded such research. The Advanced Research Projects Agency-Energy has sponsored a Rare Earth Alternatives in Critical Technologies (REACT) program, to develop alternative materials. In 2011, ARPA-E awarded 31.6 million dollars to fund Rare-Earth Substitute projects. Because of its role in permanent magnets used for wind turbines, it has been argued that neodymium will be one of the main objects of geopolitical competition in a world running on renewable energy. But this perspective has been criticized for failing to recognize that most wind turbines do not use permanent magnets and for underestimating the power of economic incentives for expanded production.

Composition

Neodymium is a metal which is ferromagnetic (more specifically it shows antiferromagnetic properties), meaning that like iron it can be magnetized to become a magnet, but its Curie temperature (the temperature above which its ferromagnetism disappears) is 19 K (−254.2 °C; −425.5 °F), so in pure form its magnetism only appears at extremely low temperatures. However, compounds of neodymium with transition metals such as iron can have Curie temperatures well above room temperature, and these are used to make neodymium magnets.

The strength of neodymium magnets is the result of several factors. The most important is that the tetragonal Nd2Fe14B crystal structure has exceptionally high uniaxial magnetocrystalline anisotropy (HA ≈ 7 T – magnetic field strength H in units of A/m versus magnetic moment in A·m2). This means a crystal of the material preferentially magnetizes along a specific crystal axis but is very difficult to magnetize in other directions. Like other magnets, the neodymium magnet alloy is composed of microcrystalline grains which are aligned in a powerful magnetic field during manufacture so their magnetic axes all point in the same direction. The resistance of the crystal lattice to turning its direction of magnetization gives the compound a very high coercivity, or resistance to being demagnetized.

The neodymium atom can have a large magnetic dipole moment because it has 4 unpaired electrons in its electron structure as opposed to (on average) 3 in iron. In a magnet it is the unpaired electrons, aligned so they spin in the same direction, which generate the magnetic field. This gives the Nd2Fe14B compound a high saturation magnetization (Js ≈ 1.6 T or 16 kG) and a remnant magnetization of typically 1.3 teslas. Therefore, as the maximum energy density is proportional to Js2, this magnetic phase has the potential for storing large amounts of magnetic energy (BHmax ≈ 512 kJ/m3 or 64 MG·Oe). This magnetic energy value is about 18 times greater than “ordinary” ferrite magnets by volume and 12 times by mass. This magnetic energy property is higher in NdFeB alloys than in samarium cobalt (SmCo) magnets, which were the first type of rare-earth magnet to be commercialized. In practice, the magnetic properties of neodymium magnets depend on the alloy composition, microstructure, and manufacturing technique employed.

The Nd2Fe14B crystal structure can be described as alternating layers of iron atoms and a neodymium-boron compound.[3] The diamagnetic boron atoms do not contribute directly to the magnetism but improve cohesion by strong covalent bonding. The relatively low rare earth content (12% by volume) and the relative abundance of neodymium and iron compared with samarium and cobalt makes neodymium magnets lower in price than samarium-cobalt magnets.

Properties

Grades

Neodymium magnets are graded according to their maximum energy product, which relates to the magnetic flux output per unit volume. Higher values indicate stronger magnets. For sintered NdFeB magnets, there is a widely recognized international classification. Their values range from 28 up to 52. The first letter N before the values is short for neodymium, meaning sintered NdFeB magnets. Letters following the values indicate intrinsic coercivity and maximum operating temperatures (positively correlated with the Curie temperature), which range from default (up to 80 °C or 176 °F) to AH (230 °C or 446 °F).

Grades of sintered NdFeB magnets: further explanation needed][18][unreliable source?]

N30 – N52

N30M – N50M

N30H – N50H

N30SH – N48SH

N30UH – N42UH

N28EH – N40EH

N28AH – N35AH

Magnetic properties

Some important properties used to compare permanent magnets are:

Remanence (Br), which measures the strength of the magnetic field.

Coercivity (Hci), the material’s resistance to becoming demagnetized.

(Maximum) Energy product (BHmax), the density of magnetic energy,[19] characterized by the maximum value of magnetic flux density(B) times magnetic field strength (H).

Curie temperature (TC), the temperature at which the material loses its magnetism.

Neodymium magnets have higher remanence, much higher coercivity and energy product, but often lower Curie temperature than other types of magnets. Special neodymium magnet alloys that include terbium and dysprosium have been developed that have higher Curie temperature, allowing them to tolerate higher temperatures. The table below compares the magnetic performance of neodymium magnets with other types of permanent magnets.

Applications

Existing magnet applications

Ring magnets

Most hard disk drives incorporate strong magnets

This manually-powered flashlight uses a neodymium magnet to generate electricity

Neodymium magnets have replaced alnico and ferrite magnets in many of the myriad applications in modern technology where strong permanent magnets are required, because their greater strength allows the use of smaller, lighter magnets for a given application. Some examples are:

  1. Head actuators for computer hard disks
  2. Mechanical e-cigarette firing switches
  3. Locks for doors
  4. Loudspeakers and headphones
  5. Mobile phone speakers, taptic feedback and auto focus actuators
  6. Magnetic bearings and couplings
  7. Benchtop NMR spectrometers
  8. Electric motors: (Using neodymium magnets in electric motors can reduce their power consumption by half.)

Cordless tools

Servomotors

Lifting and compressor motors

Synchronous motors

Spindle and stepper motors

Electrical power steering

Drive motors for hybrid and electric vehicles. The electric motors of each Toyota Prius require one kilogram (2.2 lb) of neodymium.

  1. Electric generators for wind turbines (only those with permanent magnet excitation)
  2. Alignment of nanocellulose chiral nematic suspensions to fabricate cellulose nanocrystals films with tuneable specular and off-specular optical response
  3. Voice coil
  4. Retail media case decouplers[clarification needed]
  5. In process industries, powerful neodymium magnets are used to catch foreign bodies and protect product and processes

New applications

Neodymium magnet spheres assembled in the shape of a cube

The greater strength of neodymium magnets has inspired new applications in areas where magnets were not used before, such as magnetic jewelry clasps, children’s magnetic building sets (and other neodymium magnet toys) and as part of the closing mechanism of modern sport parachute equipment. They are the main metal in the formerly popular desk-toy magnets, “Buckyballs” and “Buckycubes”, though some U.S. retailers have chosen not to sell them because of child-safety concerns, and they have been banned in Canada for the same reason.

The strength and magnetic field homogeneity on neodymium magnets has also opened new applications in the medical field with the introduction of open magnetic resonance imaging (MRI) scanners used to image the body in radiology departments as an alternative to superconducting magnets that use a coil of superconducting wire to produce the magnetic field.

Neodymium magnets are used as a surgically placed anti-reflux system which is a band of magnetssurgically implanted around the lower esophageal sphincter to treat gastroesophageal reflux disease (GERD). They have also been implanted in the fingertips in order to provide sensory perception of magnetic fields, though this is an experimental procedure only popular among biohackers and grinders.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay in Touch

To follow the best weight loss journeys, success stories and inspirational interviews with the industry's top coaches and specialists. Start changing your life today!

Related Articles